Entorhinal stellate cells show preferred spike phase-locking to theta inputs that is enhanced by correlations in synaptic activity.
نویسندگان
چکیده
In active networks, excitatory and inhibitory synaptic inputs generate membrane voltage fluctuations that drive spike activity in a probabilistic manner. Despite this, some cells in vivo show a strong propensity to precisely lock to the local field potential and maintain a specific spike-phase relationship relative to other cells. In recordings from rat medial entorhinal cortical stellate cells, we measured spike phase-locking in response to sinusoidal "test" inputs in the presence of different forms of background membrane voltage fluctuations, generated via dynamic clamp. We find that stellate cells show strong and robust spike phase-locking to theta (4-12 Hz) inputs. This response occurs under a wide variety of background membrane voltage fluctuation conditions that include a substantial increase in overall membrane conductance. Furthermore, the IH current present in stellate cells is critical to the enhanced spike phase-locking response at theta. Finally, we show that correlations between inhibitory and excitatory conductance fluctuations, which can arise through feedback and feedforward inhibition, can substantially enhance the spike phase-locking response. The enhancement in locking is a result of a selective reduction in the size of low-frequency membrane voltage fluctuations due to cancellation of inhibitory and excitatory current fluctuations with correlations. Hence, our results demonstrate that stellate cells have a strong preference for spike phase-locking to theta band inputs and that the absolute magnitude of locking to theta can be modulated by the properties of background membrane voltage fluctuations.
منابع مشابه
Artificial synaptic conductances reduce subthreshold oscillations and periodic firing in stellate cells of the entorhinal cortex.
Previous work has established that stellate cells of the medial entorhinal cortex produce prominent intrinsic subthreshold oscillations in the voltage response concentrated within the theta range (3-7 Hz). It has been speculated that these oscillations play an important role in vivo in establishing network behavior both in the entorhinal cortex and hippocampus. Consequently, it is important to ...
متن کاملPyramidal and Stellate Cell Specificity of Grid and Border Representations in Layer 2 of Medial Entorhinal Cortex
In medial entorhinal cortex, layer 2 principal cells divide into pyramidal neurons (mostly calbindin positive) and dentate gyrus-projecting stellate cells (mostly calbindin negative). We juxtacellularly labeled layer 2 neurons in freely moving animals, but small sample size prevented establishing unequivocal structure-function relationships. We show, however, that spike locking to theta oscilla...
متن کاملSynchronization in hybrid neuronal networks of the hippocampal formation.
Understanding the mechanistic bases of neuronal synchronization is a current challenge in quantitative neuroscience. We studied this problem in two putative cellular pacemakers of the mammalian hippocampal theta rhythm: glutamatergic stellate cells (SCs) of the medial entorhinal cortex and GABAergic oriens-lacunosum-molecular (O-LM) interneurons of hippocampal region CA1. We used two experiment...
متن کاملLearning in Silicon: Timing is Everything
We describe a neuromorphic chip that uses binary synapses with spike timing-dependent plasticity (STDP) to learn stimulated patterns of activity and to compensate for variability in excitability. Specifically, STDP preferentially potentiates (turns on) synapses that project from excitable neurons, which spike early, to lethargic neurons, which spike late. The additional excitatory synaptic curr...
متن کاملSpike resonance properties in hippocampal O-LM cells are dependent on refractory dynamics.
During a wide variety of behaviors, hippocampal field potentials show significant power in the theta (4-12 Hz) frequency range and individual neurons commonly phase-lock with the 4-12 Hz field potential. The underlying cellular and network mechanisms that generate the theta rhythm, however, are poorly understood. Oriens-lacunosum moleculare (O-LM) interneurons have been implicated as crucial co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 14 شماره
صفحات -
تاریخ انتشار 2013